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ABSTRACT: The solution of paternity disputes using results from scientific analyses is studied 
from a decision-theoretical viewpoint. Two alternative approaches to decision making, the 
so-called "Bayes" and 'Minimax' strategies, are described and discussed. If prior probabilities 
of paternity are exactly known, then Bayes decisions are (a) independent of the source of 
evidence and (b) optimal with respect to average losses caused by wrong decisions. However, 
it is concluded that Minimax decisions, which depend upon the employed test system but not 
upon prior probabilities, are more appropriate in paternity cases if equal prior good will 
towards disclaimed children and alleged fathers is demanded. It is further demonstrated that, 
when major evidence about paternity comes from multilocus DNA fingerprinting, prior 
probabilities must be known quite accurately for Bayes decisions to be superior with respect 
to average losses. Finally, we are able to show that 'quasi' Bayes decision making, that is, 
adopting a neutral prior probability of 0.5 but leaving thresholds for decision making 
unchanged, coincides with Minimax decision making if multilocus DNA fingerprinting is 
employed. 

KEYWORDS: pathology and biology, paternity disputes, DNA, DNA fingerprinting 

If decisions must be made in the face of uncertainty,  common sense tells us that we 
should acquire in advance as much information as possible about the object  in question. 
In paterni ty cases, where the judge has to decide whether or not a given man  shall be 
deemed to be the biological father of a child, genetic experts may contribute such in- 
formation.  Phenotypic features that are at least in part genetically determined present  
themselves in nonrandom relations between parents and their offspring. The quest ion to 
answer is whether any observed phenotypic relationship represents a proof of paternity 
or whether  it could also be due to chance alone. Any  test system should aim to provide 
the judge with convincing evidence in favor of one of these two alternatives but  usually 
an unequivocal  answer cannot  be given. Evidence is thus phrased in terms of probabilities, 
likelihoods and odds, allowing one at least to quantify the uncertainty left, 

Methods and Results 

The Likelihood Ratio 

In what follows, we shall only deal with 'one-man-cases, '  that is, cases where a decision 
has to be made merely between paternity and nonpaterni ty.  Decision making with more 
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than one putative father involved, or with incomplete information ('deficiency cases') 
will be subject to future work. The central quantity in which phenotypic information 
from individuals involved in a paternity case is condensed, is the 'likelihood ratio' or 
'paternity index' L = Y/X. Here, X and Y denote the likelihoods, or conditional prob- 
abilities, of the observed phenotypic pattern under the assumption of paternity and 
nonpaternity, respectively. The likelihood ratio is thus a measure of how much more 
likely the observed phenotypes are if the defendant is, in fact, not the true father (for a 
detailed discussion of L, see [1,2]). A small value of L consequently argues in favor of 
paternity whereas a high value provides evidence against it. Thus, a major goal for rational 
decision making should lie in finding a meaningful threshold, Lo, such that paternity is 
rejected whenever L is larger than Lo, and a decision is made in favor of true paternity 
if L is smaller than Lo. It should be noted in this context that calculation of X is com- 
paratively easy if an appropriate statistical model for the transmission of phenotypic 
features has been established. Likelihoods under the assumption of nonpaternity, how- 
ever, are more problematic. The true likelihood Y would equal the average X for males 
from a population containing all other putative fathers. This figure can scarcely be de- 
termined in practice and must be approximated. This nonwithstanding, and especially if 
rare or highly polymorphic characters are examined, estimates of the required population 
genetic parameters (for example, allele frequencies) may be rather inaccurate or difficult 
to obtain. 

The Losses Bound up with Wrong Decisions 

After  all information relevant to a decision has been gathered, decision making depends 
upon the 'losses' that are assigned to possible wrong decisions [3,4]. (This principle cannot 
be denied although it may seem callous to talk about losses in the context of paternity 
disputes. Decision making does not depend upon probabilities or likelihoods alone, but 
also requires relative weighting of the different alternatives involved, in order to be 
optimal in some respect. To most of us, odds of 1:100 for a shower appear too small for 
taking an umbrella with us, whereas the same odds for a gun aimed at us being loaded 
puts us to flight). At  least intuitively, the judge has to have an impression, too, of how 
much worse it would be to let a true father get off as opposed to deeming a defendant 
to be the father when in fact he is not. Only for the purposes of formal analysis shall we 
denote the losses bound up with these errors as A (rejecting paternity although true) 
and B (accepting paternity although false). Both figures are unitless, and we shall see 
later that only their relative ratio, that is, A/B, is essential for decision making. 

The Prior Probability of Paternity 

In a paternity dispute there is commonly further, though unquantifiable evidence that 
might need to be considered in decision making. If, for example, the defendant is able 
to convince the judge that he had not seen the mother in the year before the birth of 
the child, then even a very small likelihood ratio can be outweighed by this fact. Con- 
sideration of such points is equivalent to the question about how to deal with prior 
probabilities in the process of decision making. Prior probabilities for paternity, P, and 
nonpaternity, l-P, may either be purely intuitive or may stem from empirical studies. 
Although empirical figures appear  to be scientifically substantiated, their relevance 
to an individual case and their reliability may be questioned as much as for intuitive 
predicates. 
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Bayes and Minimax Decisions 

Optimization of decision making requires certain criteria. If one and the same kind of 
decision has to be made rather often, then it appears logical to require that the average 
loss caused by wrong decisions should be minimal. If, however, the decision is made only 
once or seldomly then we shall probably be more interested in keeping the maximum 
loss expected from different scenarios as small as possible. A life insurance company, 
with its premium well adjusted to the prior probability of claim, will usually conclude a 
contract with any interested client. Although the company's loss is large in an individual 
case, their business runs rather profitably because the overall number of clients is large. 
A single client, although facing the same prior probabilities, will also decide in favor of 
the contract because his loss would be unbearable in case of a mishap. 

The previously mentioned different requirements are fulfilled by two strategies studied 
in statistical decision theory, the 'Bayes' and the 'Minimax' principle. The essential 
difference between these two approaches is that decision making according to the Bayes 
strategy involves prior probabilities whereas the Minimax strategy does not. The question 
of whether decisions about paternity cases should be made according to Bayes or Minimax 
principles is of both theoretical and practical interest, and it will be demonstrated in the 
following sections under which circumstances each approach would be the more appro- 
priate. The implications of these considerations will then be discussed in detail for the 
application of multilocus DNA fingerprinting in paternity testing. Here, as we shall see, 
adopting equal prior probabilities will usually convert Bayesian into Minimax decisions. 

The Optimal Thresholds for Decision Making 

Let Lo be a given threshold for the likelihood ratio. For the sake of simplicity, we 
shall abbreviate the probability of L > Lo for true fathers as a(Lo), and the probability 
of L < Lo for non-fathers as ~(Lo). These figures are usually referred to as the 'error 
rates' bound up with the threshold Lo. If we decide in favor of paternity whenever L is 
smaller than Lo, and against paternity if L > Lo, then the loss expected among cases 
where true fathers are tested is 

v, = A x ec(Lo) 

and 

v2 = B x fS(Lo) 

for nonfathers. 
Decision making according to the Minimax principle means that the maximum of both, 

vl and v2, should be minimal. This is achieved exactly when vl = v2, because increasing 
Lo in the case of equality would reduce v~ but increase v2 and, therefore, the maximum 
of the two. Similarly, any decrease of Lo would reduce v2 but increase v~, so that the 
optimal threshold for Minimax decisions is implicitly defined by 

A • effLo) = B • f3(Lo) 

or 

A / B  = ~ ( L o ) / ~ ( L o ) .  



1528 JOURNAL OF FORENSIC SCIENCES 

This  decis ion rule is also intui t ively apparen t .  If unjust i f ied  re jec t ion  of pa te rn i ty  is 
r ega rded  as 100 t imes  less ha rmfu l  t h a n  deeming  a m a n  to be the f a the r  when  he actually 
is not ,  then  it also seems fair  to let 100 t rue fa thers  get off before  do ing  a single non fa the r  
an injust ice,  i r respect ive of pr ior  probabi l i t ies .  In pract ice ,  exact de t e rmina t i on  of Lo is 
feasible for  a rat io  A / B  if the  d is t r ibut ions  of L ,  given pa tern i ty  and  nonpa te rn i ty ,  are 
known.  If L fu r the r  follows a cont inuous ,  or  approx imate ly  con t inuous  d is t r ibut ion,  then  
a un ique  Lo can be found.  

W h e n  deciding according to the  Bayes  principle,  we want  to de t e rmine  Lo such tha t  
the average  loss 

v' = e x vl + (1 - P)  x v2 

= P x A x a (Lo)  + (1 - P)  x B x f3(Lo) 

is minimal ,  et(Lo) was def ined as the  p robabi l i ty  of  L > Lo for t rue fa thers  and,  therefore ,  
equals  the sum of X values t aken  over  all imaginable  cases with L > Lo. Consequent ly ,  

P x vl = P x A x a(Lo) = E P  • A x X 

where  s u m m a t i o n  is over  all cases wi th  L > Lo, and 

(1 - P)  x v 2 = (1 - p )  x B x f3(Lo) = Z(1 - P)  x B x Y 

where  s u m m a t i o n  is over  all cases with  L < Lo. This  means  that  cases in which a decision 
is made  in favor  of  pa te rn i ty  con t r ibu te  

( 1 - P )  x B x Y  

to v ' ,  whereas  cases in which decisions is made  against  pa terni ty  con t r ibu te  

P x A x X  

Casewise con t r ibu t ion  to v' would hence  be smallest  if a decision were made  in favor  of 
pa te rn i ty  for  cases with  

(1 - P)  x B x Y < P  x A  x X 

and  against  pa te rn i ty  for cases with 

P x A  x X < ( 1  - P)  x B x Y. 

These  cri teria are equ iva len t  to 

L = Y / X < P  • A/[(1 - P)  x B ] a n d  

L : Y / X > P  x A/[(1 - P)  x B]. 

Hence ,  we should  take 

L o = P x A/[(1 - P)  x B]. 
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The optimal threshold for decision making following Bayes principles is, thus, inde- 
pendent of the likelihood distributions, but depends only on the losses and the prior 
probability of paternity. 

Minimax and Bayes thresholds, and therefore average losses bound up with the two 
strategies, usually coincide for only one prior probability, say Po, depending on the 
likelihood distributions. Since the average loss is always larger for Minimax than for 
Bayes decisions, the Bayes decision for Po yields, of course, the maximum average loss 
of all prior probabilities. Therefore, a Minimax decision can be regarded as a Bayes (and 
therefore optimal) decision under a worst case scenario, that is, assuming the most 
disadvantageous, or 'worst, '  prior probability Po. As evident from the name, the MIN- 
imum loss (from the Bayes decision) attains its MAXimum for Po. 

The Probability o f  Paternity 

The Bayes criterion 

L = Y / X < L o  = P • A/[(1 - P) • B] 

is equivalent to 

W = P x X/[P x X + (1 - P) • Y ] >  B/(A + B) 

where W equals the posterior probability of paternity, calculated from Bayes'  formula. 
W can be interpreted as the proportion of true fathers seen by the judge among a large 
series of identical cases. A Bayes decision can thus be made on the basis of the posterior 
probability of paternity alone. If W exceeds a certain limit, depending on the relative 
loss ratio only, then decision should be made in favor of paternity, otherwise paternity 
must be rejected. 

It should be noted that the probabilistic interpretation of W mentioned above is only 
admissible if P equals the true prior probability of paternity. This, however, cannot be 
claimed in general for the commonly used standardized or 'Essen-MOller' probability of 
paternity, W,, calculated on the basis of P = 0.5 [5] Ws as such is a transformation of 
the likelihood ratio, and decision making strategies based solely on W, and thresholds 
that are independent of the test system will usually be less than optimal. Considerations 
as carried out above for Bayes decisions do not obviously apply unless, in fact, P = 0.5. 
On the other hand, decisions based on W~ can also not be expected to coincide with 
Minimax decisions: The loss ratio A/B is independent of the test system, so that the 
threshold for a Minimax decision will actually depend on the likelihood distributions and, 
thus, the analytical methods employed. 

Decisions Based on Multilocus DNA Fingerprints 

Whether a Bayes decision is optimal depends on knowledge about the true prior 
probability of paternity. It may well be that the average losses bound up with Bayes 
decisions are larger than those of the corresponding Minimax decisions if the estimate 
of the prior probability is too inaccurate. This phenomenon shall now be examined in 
detail for decisions made on the basis of so-called "multilocus DNA fingerprints. '  

For the generation of a DNA fingerprint, an individual's DNA is digested using specific 
restriction enzymes, size separated by gel electrophoresis, and hybridized to a compar- 
atively short, labelled DNA probe. An autoradiographic band appears at a specific 
position of the DNA fingerprint if cleavage of the DNA yields at least one fragment of 
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corresponding electrophoretic mobility that hybridizes to the probe used. Among the 
test systems applied to DNA typing in paternity disputes are single locus probes, pin 
pointing only one site of variability in the human genome, and multilocus probes, capable 
of detecting polymorphism at many D N A  loci at a time. Results of multilocus D N A  
fingerprinting can be regarded as a series of informational bits, depending upon either 
absence or presence of a band at the analyzed positions of an autoradiograph. While 
typing results for single locus probes can be analyzed as codominant Mendelian traits, 
formal genetic analysis of hybridization patterns derived by multilocus probes is more 
complicated. 

Recently, we have presented a new approach to the statistical analysis of multilocus 
D N A  fingerprints, allowing the calculation of joint likelihoods, X and Y, for the mul- 
tilocus D N A  fingerprints of mother, child, and putative father [6]. These likelihoods 
depend mainly on the number of separable gel positions and on the probability, x, of 
presence of a band at each of them. Two sets of parameters rather typical of the real 
life situation with multilocus DNA fingerprints are x = 0.25 on 60 positions [7], and x = 
0.15 on 120 positions [8]. Likelihood distributions and error rates assuming these param- 
eters were derived from the simulation of 5 000 000 cases of paternity and nonpaternity, 
respectively. Simulation had to be employed here because exact calculation or even 
approximation of the likelihood distributions is scarcely feasible at their extremes. The 
results are presented in Fig. 1 in the form of cumulative distribution functions for the 
logl0 of the likelihood ratio L. Distribution functions corresponding to paternity were 
generated by including in the trios those fathers that were utilized to simulate the offspring 
I )NA fingerprints. Nonpaternity was simulated by including another individual with a 
' randomly'  generated D N A  fingerprint. For  x = 0.25 on 60 positions, 99.73% of fathers 
as opposed to 0.63% of non-fathers exhibit a log-likelihood ratio less than zero, corre- 
sponding to L = 1. For x = 0.15 on 120 positions, these rates improve to 99.93% and 
0.08%, respectively. 
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FIG. 1- -The  phenotype likelihoods for multilocus DNA fingerprints o f  father-mother-child trios. 
The cumulative distribution o f  the loglO o f  the likelihood ratio Y/X (nonpaternity vs. paternity) is 
given. Left curves refer to trios with true fathers included (F.); the two curves on the right side refer 
to cases where nonfathers (that is, 'random' individuals) are included in the trio (NF.). x: band- 
sharing probability, Pos.: separable gel positions. 
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If a judge pretends to know the correct prior probability and tries to make optimal 
(that is, Bayes) decisions, then a threshold of 0.99 for the probability of paternity is 
equivalent to an implicitly assigned loss ratio of 1:99. In general, if Z is the threshold 
for W, then the assumption of optimality implies 

A / B  = Z/(1 - Z).  

Let us adopt A / B  = 1:99 which corresponds to a commonly accepted limit of 0.99 for 
W [5]. The appropriate Minimax thresholds, calculated from the likelihood distributions 
such that 

A / B  = fS(Lo)/a(Lo), 

are Lo = 0.0117 for x = 0.25, and L o = 0.0132 for x = 0.15. Use of these thresholds 
is equivalent to adopting limits of 0.9884 and 0.9870, respectively, for the standardized 
probability of paternity, W s. This means that paternity should be accepted in a Minimax 
decision if Ws exceeds 0.9884 in the case of x = 0.25 on 60 positions, or if W~ exceeds 
0.9870 for x = 0.15 on 120 positions. It should be noted that both thresholds are rather 
close to 0.99, the limit of W assumed for optimal decision making here. This phenomenon 
reflects that both 'worst'  prior probabilities, Po = 0.538 for x = 0.25 and Po = 0.566 
for x = 0.15, are close to 0.5, which in turn is used for the calculation of Ws. The above- 
mentioned findings have a rather curious implication. If the decision (i) is based upon 
W, as derived from multilocus DNA fingerprints, and (ii) if 0.99 is regarded as a suitable 
threshold for W in cases where the true prior probability of paternity is known, then a 
Minimax decision is made, in fact, if this threshold is applied to Ws. 

We next want to demonstrate how accurate the prior probability of paternity is required 
to be known, in order for the Bayes decision to be superior to the Minimax decision. 
Therefore average losses bound up with Bayes and Minimax decisions on the basis of 
multilocus DNA fingerprints were calculated, now assuming A = 1 and B = 99. Average 
losses were derived for a variety of true vs. assumed prior probabilities, respectively, 
and the results are presented in Fig. 2. Shaded regions correspond to pairs of prior 
probabilities for which the Bayes criterion including the assumed prior probability yields 
smaller average losses than the Minimax criterion. White areas represent pairs for which 
the Minimax decision is superior with respect to average losses. The straight line dividing 
both sections corresponds to the "worst' prior probability, which is a rather logical prop- 
erty. Obviously, the average loss is proportional to the difference between assumed and 
true prior probabilities. Thus, if the true prior probability is smaller than Po, assuming 
P larger than Po yields average losses larger than the Minimax strategy. A similar ar- 
gument applies if the true prior probability is larger than Po. Although actual values of 
losses had to be adopted for these considerations, the results depend again only on the 
relative ratio A / B .  

As can be inferred from Fig. 2, the prior probability of paternity must be known quite 
accurately for a Bayes decision to be superior. This is especially the case if the true value 
is close to the 'worst'  prior probability. The latter, as has been demonstrated above, 
depends on both the likelihood distribution (that is, the test procedure) and the loss 
ratio. If the loss ratio increases, so does the 'worst '  prior probability. For example, if 
A / B  = 0.999 then Po is 0.593 (x = 0.25 on 60 positions) and 0.714 (x = 0.15 on 120 
positions), respectively. 

Conclusions 

The use of prior probabilities in decision making about paternity cases has been a 
subject of theoretical debate [9-13]. We set out in this paper to apply statistical decision 
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FIG. 2--Decision making in paternity cases using multilocus DNA fingerprints. Shaded regions 
correspond to pairs of true and assumed prior probability of paternity, respectively, for which average 
losses bound up with Bayes decisions are smaller than with Minimax decisions (MM < BA YES). 
x: band-sharing probability. 

theory in order to study this problem. This approach requires that, at least intuitively, 
a judge must be aware of how much worse it is to do a non-father injustice than letting 
a true father get off. These relative losses must form the basis of decision making. The 
considerations outlined above show that, in case the prior probabilities of paternity were 
exactly known, they must be considered if the judge intends to minimize the average 
losses bound up with wrong decisions. 

However, keeping the average losses at their minimum is mainly in the interest of the 
court, but this may not be so for the children seeking their fathers or the defendants 
denying paternity. An alleged father, for example, may justly ask why he should be at 
a disadvantage as compared to others only because prior odds in favor of paternity are 
higher under certain circumstances which apply to his case. Modifying results from lab- 
oratory testing by prior valuations means falsifying their probative weight. It cannot 
seriously be claimed that a knife says more about a case of murder, merely because it 
has been found in a sinister residential area. Minimax criteria do not pay regard to prior 
probabilities but 'let the facts tell their own tales, '  and therefore appear to be more 
appropriate.  In order to let the judge account for whatever his own implicit loss ratio 
A' /B '  is, the results experts provide to the court should also include error rates, a(L,)  
and 13(L,) in addition to the actual L,. For example, if 

~(L~)/a(L.)  > A ' /B '  = ~(Lo)/a(Lo) 

then this implies La > Lo, and a Minimax decision would be made against paternity. 
However, whether a request of equal prior good will towards all disclaimed children and 
all alleged fathers is legitimate cannot be answered by theoretical considerations. 

Decisions based on Minimax criteria are not optimal with respect to average losses, 
unless the true prior probability is close to the so-called 'worst '  prior probability. How- 
ever, we have demonstrated that for a broad range of realistic prior probabilities 
[14-16] this may actually be the case. Thus, even if 'average' justice is required in the 
sense of small average losses, Minimax decision making is appropriate.  Finally we noted 
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that, if multilocus D N A  fingerprints are employed for paternity testing, adopting equal  
prior probabilit ies to take (intuitively) a standpoint  of neutrali ty is equivalent  to making 
a Minimax decision. Thus, at least for this test system, a discussion as to whether  assuming 
P = 0.5 is justified for the calculation of paternity probabili t ies is meaningless.  Whe the r  
such a s ta tement  also holds for o ther  test procedures  remains to be determined.  
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